International Food

Extreme climate events increase risk of global food insecurity and adaptation needs

  • 1.

    Handmer, J. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, (eds Field, C. B. et al.) 231–290 (Cambridge Univ. Press, 2012).

  • 2.

    Tao, F. & Zhang, Z. Climate change, high-temperature stress, rice productivity, and water use in eastern China: a new superensemble-based probabilistic projection. J. Appl. Meteorol. Climatol. 52, 531–551 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Challinor, A. J., Simelton, E. S., Fraser, E. D. G., Hemming, D. & Collins, M. Increased crop failure due to climate change: assessing adaptation options using models and socio-economic data for wheat in China. Environ. Res. Lett. 5, 034012 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 4.

    Urban, D., Roberts, M. J., Schlenker, W. & Lobell, D. B. Projected temperature changes indicate significant increase in interannual variability of US maize yields. Clim. Change 112, 525–533 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Müller, C. & Robertson, R. D. Projecting future crop productivity for global economic modeling. Agric. Econ. 45, 37–50 (2014).

    Article 

    Google Scholar
     

  • 6.

    Nelson, G. C. et al. Climate change effects on agriculture: economic responses to biophysical shocks. Proc. Natl Acad. Sci. USA 111, 3274–3279 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 7.

    Rosenzweig, C. & Parry, M. L. Potential impact of climate change on world food supply. Nature 367, 133–138 (1994).

    ADS 
    Article 

    Google Scholar
     

  • 8.

    Fischer, G., Shah, M., N. Tubiello, F. & van Velhuizen, H. Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Philos. Trans. R. Soc. B Biol. Sci. 360, 2067–2083 (2005).

    Article 

    Google Scholar
     

  • 9.

    Nelson, G. C. et al. Food Security, Farming, and Climate Change to 2050, Scenarios, Results, Policy Options (IFPRI, 2010).


    Google Scholar
     

  • 10.

    Hasegawa, T. et al. Climate Change impact and adaptation assessment on food consumption utilizing a new scenario framework. Environ. Sci. Technol. 48, 438–445 (2014).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 11.

    Stevanovic, M. et al. The impact of high-end climate change on agricultural welfare. Sci. Adv. 2, e1501452 (2016).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 12.

    Lobell, D. B. et al. Prioritizing climate change adaptation needs for food security in 2030. Science 319, 607–610 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 13.

    Fuss, S. et al. Global food security & adaptation under crop yield volatility. Technol. Forecast. Soc. Change 98, 223–233 (2015).

    Article 

    Google Scholar
     

  • 14.

    Diffenbaugh, N. S., Hertel, T. W., Scherer, M. & Verma, M. Response of corn markets to climate volatility under alternative energy futures. Nat. Clim. Chang. 2, 514–518 (2012).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 15.

    Ahmed, A. S., Diffenbaugh, S. N. & Hertel, W. T. Climate volatility deepens poverty vulnerability in developing countries. Environ. Res. Lett. 4, 034004 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 16.

    Ahmed, S. A. et al. Climate volatility and poverty vulnerability in Tanzania. Glob. Environ. Change 21, 46–55 (2011).

    Article 

    Google Scholar
     

  • 17.

    Suweis, S., Carr, J. A., Maritan, A., Rinaldo, A. & D’Odorico, P. Resilience and reactivity of global food security. Proc. Natl Acad. Sci. USA 112, 6902–6907 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 18.

    Puma, M. J., Bose, S., Chon, S. Y. & Cook, B. I. Assessing the evolving fragility of the global food system. Environ. Res. Lett. 10, 024007 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Chatzopoulos, T., Perez Dominguez, I., Zampieri, M. & Toreti, A. Climate extremes and agricultural commodity markets: a global economic analysis of regionally simulated events. Weather Clim. Extrem. 27, 100193 (2019).

    Article 

    Google Scholar
     

  • 20.

    Katz, R. W. & Brown, B. G. Extreme events in a changing climate: variability is more important than averages. Clim. Change 21, 289–302 (1992).

    ADS 
    Article 

    Google Scholar
     

  • 21.

    Salinger, M. J. Climate variability and change: past, present and future–an overview. Clim. Change 70, 9–29 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Flato, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.), 741–866 (Cambridge University Press, 2013).

  • 23.

    The State of Food Insecurity in the World 2012: Economic Growth Is Necessary but Not Sufficient to Accelerate Reduction of Hunger and Malnutrition (Food and Agriculture Organization, 2012).

  • 24.

    Hasegawa, T. et al. Consequence of climate mitigation on the risk of hunger. Environ. Sci. Technol. 49, 7245–7253 (2015).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 25.

    Sakurai, G., Iizumi, T., Nishimori, M. & Yokozawa, M. How much has the increase in atmospheric CO2 directly affected past soybean production? Sci. Rep. 4, 4978 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 26.

    Müller, C. et al. The global gridded crop model intercomparison phase 1 simulation dataset. Sci. Data 6, 50 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 27.

    Fujimori, S., Masui, T. and Matsuoka, Y. AIM/CGE [Basic] Manual (Center for Social and Environmental Systems Research, NIES, 2012).

  • 28.

    Sillmann, J. et al. Understanding, modeling and predicting weather and climate extremes: challenges and opportunities. Weather Clim. Extrem. 18, 65–74 (2017).

    Article 

    Google Scholar
     

  • 29.

    Attribution of Extreme Weather Events in the Context of Climate Change (National Academies Press, 2016).

  • 30.

    Stephenson, D. B. in Climate Extremes and Society (eds Diaz H. F. & Murnane R. J.) 11–23 (Cambridge University Press, 2008).

  • 31.

    Hasegawa, T., Fujimori, S., Takahashi, K. & Masui, T. Scenarios for the risk of hunger in the twenty-first century using shared socioeconomic pathways. Environ. Res. Lett. 10, 014010 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Fujimori, S. et al. A multi-model assessment of food security implications of climate change mitigation. Nat. Sustain. 2, 386–396 (2019).

    Article 

    Google Scholar
     

  • 33.

    van Meijl, H., Tabeau, A., Stehfest, E., Doelman, J. & Lucas, P. How food secure are the green, rocky and middle roads: food security effects in different world development paths. Environ. Res. Commun. 2, 031002 (2020).

    Article 

    Google Scholar
     

  • 34.

    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 35.

    Hasegawa, T. et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Chang. 8, 699–703 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 36.

    Lassa, J. A., Teng, P., Caballero-Anthony, M. & Shrestha, M. Revisiting emergency food reserve policy and practice under disaster and extreme climate events. Int. J. Disaster Risk Sci. 10, 1–13 (2019).

    Article 

    Google Scholar
     

  • 37.

    Janssens, C. et al. Global hunger and climate change adaptation through international trade. Nat. Clim. Chang. 10, 829–835 (2020).

    ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • 38.

    International Assessment of Agricultural Knowledge: Science and Technology for Development Global Report (IAASTD, 2009).

  • 39.

    Stathers, T., Lamboll, R. & Mvumi, B. M. Postharvest agriculture in changing climates: its importance to African smallholder farmers. Food Sec. 5, 361–392 (2013).

    Article 

    Google Scholar
     

  • 40.

    Chriest, A. & Niles, M. The role of community social capital for food security following an extreme weather event. J. Rural Stud. 64, 80–90 (2018).

    Article 

    Google Scholar
     

  • 41.

    World Agricultural Supply and Demand Estimates Report (US Department of Agriculture, 2016).

  • 42.

    O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim. Change 122, 387–400 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 43.

    Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Global Environ. Change 42, 153–168 (2017).

    Article 

    Google Scholar
     

  • 44.

    Fujimori, S. et al. SSP3: AIM implementation of Shared Socioeconomic Pathways. Global Environ. Change 42, 268–283 (2017).

    Article 

    Google Scholar
     

  • 45.

    Masutomi, Y., Takahashi, K., Harasawa, H. & Matsuoka, Y. Impact assessment of climate change on rice production in Asia in comprehensive consideration of process/parameter uncertainty in general circulation models. Agric. Ecosyst. Environ. 131, 281–291 (2009).

    Article 

    Google Scholar
     

  • 46.

    Denman, K. L. et al. Couplings Between Changes in the Climate System and Biogeochemistry (Cambridge University Press, 2007).


    Google Scholar
     

  • 47.

    Lal, P. N. et al. in Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, [Field, C.B. et al. (eds.)]. 339–392 (Cambridge University Press, 2012).

  • 48.

    Hertel, T. W. Food security under climate change. Nat. Clim. Chang. 6, 10–13 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 49.

    O’Neill, B. C. et al. Achievements and needs for the climate change scenario framework. Nat. Clim. Chang. 10, 1074–1084 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 50.

    Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015) http://unfccc.int/resource/docs/2015/cop21/eng/10a01.pdf

  • 51.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2011).

    ADS 
    Article 

    Google Scholar
     

  • 52.

    Hempel, S.F., Frieler, K., Warszawski, L., Schewe, J. & Piontek, F. Bias Corrected GCM Input Data for ISIMIP Fast Track (GFZ Data Services, 2013).

  • 53.

    Iizumi, T., Takikawa, H., Hirabayashi, Y., Hanasaki, N. & Nishimori, M. Contributions of different bias-correction methods and reference meteorological forcing data sets to uncertainty in projected temperature and precipitation extremes. J. Geophys. Res. Atmos. 122, 7800–7819 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 54.

    Iizumi, T. et al. Prediction of seasonal climate-induced variations in global food production. Nat. Clim. Chang. 3, 904–908 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 55.

    Parry, M., Rosenzweig, C., Iglesias, A., Fischer, G. & Livermore, M. Climate change and world food security: a new assessment. Global Environ. Change 9, S51–S67 (1999).

    Article 

    Google Scholar
     

  • 56.

    Mastrandrea, M. D. et al. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties (IPCC, 2010).

  • 57.

    Zhou, D., Yu, X. & Herzfeld, T. Dynamic Food Demand in Urban China. GlobalFood Discussion Paper (Georg-August-Universität Göttingen, 2014).

  • 58.

    Bhargava, A. Estimating short and long run income elasticities of foods and nutrients for rural south India. J. R. Stat. Soc. Ser. A Stat. Soc. 154, 157–174 (1991).

    Article 

    Google Scholar
     

  • 59.

    Farquhar, G. D., von Caemmerer, S. & Berry, J. A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78–90 (1980).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 60.

    Neitsch, S. L., Arnold, J. G., Kiniry, J. R., Williams, J. R. & King, K. W. Soil and Water Assessment Tool Theoretical Documentation (Grassland Soil and Water Research Laboratory, Agricultural Research Service, United States Department of Agriculture, 2009).

  • 61.

    Iizumi, T. et al. Historical changes in global yields: major cereal and legume crops from 1982 to 2006. Glob. Ecol. Biogeogr. 23, 346–357 (2014).

    Article 

    Google Scholar
     

  • 62.

    Vrugt J. A. A. H., et al. Accelerating Markov chain Monte Carlo simulation by differential evolution with self-adaptive randomized subspace sampling. Int. J. Nonlinear Sci. Numer. Simul. 10 (2009).

  • 63.

    Baldocchi, D. An analytical solution for coupled leaf photosynthesis and stomatal conductance models. Tree Physiol. 14, 1069–1079 (1994).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar
     

  • 64.

    Fujimori, S., Hasegawa, T., Masui, T. & Takahashi, K. Land use representation in a global CGE model for long-term simulation: CET vs. logit functions. Food Sec. 6, 685–699 (2014).

    Article 

    Google Scholar
     

  • 65.

    von Lampe, M. et al. Why do global long-term scenarios for agriculture differ? An overview of the AgMIP global economic model intercomparison. Agric. Econ. 45, 3–20 (2014).

    Article 

    Google Scholar
     

  • 66.

    Hanasaki, N. et al. A global water scarcity assessment under Shared Socio-economic Pathways—part 1: water use. Hydrol. Earth Syst. Sci. 17, 2375–2391 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 67.

    FAO Methodology for the Measurement of Food Deprivation: Updating the Minimum Dietary Energy Requirements (Food and Agriculture Organization, 2008).